How to Make Process Model Matching Work Better? An Analysis of Current Similarity Measures
نویسندگان
چکیده
Process model matching techniques aim at automatically identifying activity correspondences between two process models that represent the same or similar behavior. By doing so, they provide essential input for many advanced process model analysis techniques such as process model search. Despite their importance, the performance of process model matching techniques is not yet convincing and several attempts to improve the performance have not been successful. This raises the question of whether it is really not possible to further improve the performance of process model matching techniques. In this paper, we aim to answer this question by conducting two consecutive analyses. First, we review existing process model matching techniques and give an overview of the specific technologies they use to identify similar activities. Second, we analyze the correspondences of the Process Model Matching Contest 2015 and reflect on the suitability of the identified technologies to identify the missing correspondences. As a result of these analyses, we present a list of three specific recommendations to improve the performance of process model matching techniques in the future.
منابع مشابه
Evaluation of Similarity Measures for Template Matching
Image matching is a critical process in various photogrammetry, computer vision and remote sensing applications such as image registration, 3D model reconstruction, change detection, image fusion, pattern recognition, autonomous navigation, and digital elevation model (DEM) generation and orientation. The primary goal of the image matching process is to establish the correspondence between two ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملDetection of Fake Accounts in Social Networks Based on One Class Classification
Detection of fake accounts on social networks is a challenging process. The previous methods in identification of fake accounts have not considered the strength of the users’ communications, hence reducing their efficiency. In this work, we are going to present a detection method based on the users’ similarities considering the network communications of the users. In the first step, similarity ...
متن کاملAn Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کامل